شبیه‌سازی کشف و شناسایی اهداف پرنده در سامانه‌های فرماندهی و کنترل با بهره‌گیری از نظریه فازی

نوع مقاله: مقاله علمی- پژوهشی

نویسندگان

1 استاد دانشکده مدیریت دانشگاه تهران

2 دانشیار ریاضی دانشگاه عالی دفاع ملی

3 دانشجوی دکتری تحقیق در عملیات پردیس بین الملل کیش دانشگاه تهران - عضو هیئت علمی دانشگاه فرماندهی و ستاد آجا

چکیده

در قرون آینده تصور دنیای بدون مسافرت‌های هوایی امری غیرممکن تلقی می‌گردد. همه روزه شرکت‌های هواپیمایی میلیون‌ها مسافر و کالا را بین کشورها و شهرهای مختلف جابجا می‌نمایند. در این فرایند امنیت پرواز هواپیماها از اهمیت ویژه‌ای برخوردار است. کشورهای مختلف برای تامین امنیت خود نیازمند سامانه‌های پیشرفته کشف، شناسایی مراقبت هوافضایی آسمان برای همه اهداف پروازی هستند. در بسیاری از کشورها فرایند کشف با استفاده از انواع رادارها صورت می‌پذیرد و فرایند شناسایی به چندین روش مختلف و عمدتاً توسط افراد متخصص در مراکز کنترل فضایی انجام می‌شود. اشکال عمده روش‌های فعلی احتمال بروز خطاهای تصمیم‌گیری انسانی می‌باشد. لذا به نظر می‌رسد با توجه به پیش‌بینی‌های انجام شده و روند رو به افزایش ترافیک هوایی لازم است با استفاده از مدل‌های تصمیم‌گیری فازی و هوش مصنوعی سامانه‌های نرم‌افزاری طراحی نمود که بتواند به عنوان تصمیم‌یار به نفرات تصمیم‌گیرنده در این حوزه کمک نماید. بر همین اساس در این مقاله با استفاده از داده‌های موجود به عنوان اطلاعات آموزشی، آزمون و اعتبارسنجی و آموزش در محیط الگوریتم فازی رابط کاربری تاکاچی- سوگنو در محیط نرم افزار متلب استفاده شده و الگوی بهینه‌ای جهت فرایندهای کشف و شناسایی توسط سامانه پیشنهادی ارائه گردیده است. مهمترین نتیجه این تحقیق بهبود تشخیص و اقدام مناسب اهداف پروازی به میزان حدود 20 درصد می‌باشد. با توجه به اینکه الگوریتم پیشنهادی به دلیل بهره‌گیری از پایگاه دانش قابلیت یادگیری و پیش‌بینی روندها را دارا می­باشد، در مأموریت‌های آینده کاربرد وسیع‌تری خواهد داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Simulation and Optimization of detection and identification of targets in command and control systems by using fuzzy algorithms.

نویسندگان [English]

  • Mehreghan Mohammad Reza 1
  • Mohammad Reza Khorashadizadeh 2
  • Mohammad Taghi Partovi 3
1 Full Professor of Industrial Management in Faculty of Management of Tehran University
2 Associate Prof.
3 PhD Candidate in Operation Research, Kish International Campus, University of Tehran, & Faculty Member in Command and Staff University
چکیده [English]

In the futures century, it's impossible to imagine a world without air travel. every day airlines bring millions of passengers and goods between different countries and cities. in this process, the safety of flying airplanes has particular importance. different countries require advanced detection systems to identify their aerospace care for all flight targets. In many countries, the discovery process takes place using a variety of radars, and the identification process is carried out in a number of different ways, mainly by individuals specializing in spatial control centers, the main drawback of the current methods is the probability of occurrence of human decision making errors. therefore, it seems that considering the predictions and the increasing trend of air traffic, it is necessary to design fuzzy decision making and artificial intelligence software systems that can be used as decision makers in decision making in this area. accordingly, in this paper, using existing data as training, testing, validation and training information in the environment of the Tacachi-Sugeno interface fuzzy algorithm in MATLAB software environment, an optimal model for detection and identification processes is presented by the proposed system. the most important result of this study is to improve the detection and proper action of the flight targets by approximately 20%. given that the proposed algorithm has the ability to learn and predict trends due to the use of the knowledge base, it will be wider to apply in future missions.

کلیدواژه‌ها [English]

  • Detection and Identification targets
  • Command and Control System
  • fuzzy theory
  • Adaptive neuro-fuzzy inference system (ANFIS)
  1. ·     آقابابایی، مجید. و خویشه، محمد. (1391). کاربرد الگوریتم ژنتیک و شبکه‌های عصبی در بهینه‌سازی سامانه C4I زیردریایی، 62 (62): 61-73.
  2. ·     آقابالازاده؛ علی‌اصغر. و محمدی، اردشیر. (1392). مدیریت صحنه نبرد در پدافند هوایی (اصول اساسی)، تهران: انتشارات دانشگاه فرماندهی و ستاد آجا،
  3. ·     پرتوی، محمدتقی. مظلوم، جلیل. جلالی، علی. و ژاله‌پوران، علی. (1391). معماری دوسویه در سامانه‌های فرماندهی و کنترل، ششمین کنفرانس ملی انجمن علمی فرماندهی و کنترل ایران، تهران، انجمن علمی فرماندهی و کنترل ایران، دانشکده برق و کامپیوتر دانشگاه شهید بهشتی، https://www.civilica.com/Paper-CCCI06-CCCI06_044.html.
  4. ·     رضایی، بهرام. پرتوی، محمدتقی. و نصیرپور، غلامرضا. (1391). شبیه‌سازی کشف و شناسایی تهدیدات هوایی در سامانه‌های فرماندهی و کنترل، فصلنامه علوم و فنون نظامی، 140:22-125.
  5. ·     عبدی، فریدون. (1390). سامانة فرماندهی و کنترل C5I2 و بررسی نقش رایانه‌ها در آن، فصلنامه مدیریت نظامی، 11 (42): 69-43.
  6. ·     فتاحی، محمد. و گروسی، سحر. (1391). الگوریتم ارزیابی تهدید با استفاده ازمنطق فازی، ششمین کنفرانس ملی انجمن علمی فرماندهی و کنترل ایران، تهران، انجمن علمی فرماندهی و کنترل ایران، دانشکده برق و کامپیوتر دانشگاه شهید بهشتی. https://www.civilica.com/Paper-CCCI06-CCCI06_008.html.
  7. ·     مقدس، محمد. و بیگدلی، حمید. (1396)، شبیه‌سازی نبرد با استفاده از شبکه‌های عصبی زمان پیوسته، فصلنامه آینده‌پژوهی دفاعی،10 (5).
  8. ·     میرفخرالدینی، سیدحیدر. آذر، عادل. و پورحمیدی، مسعود. (1392). منطق فازی و کاربرد آن در مدیریت، تهران: انتشارات دانشگاه یزد. 
  • Abraham A. (2002). A framework for optimization of fuzzy inference systems using neural network learning and evolutionary computation, In Proc. Of the 17th IEEE Int. Symp. Intelligent Control, pp. 327–332.
  • Bennett Simon A. (2016). The Benefits of a Systems-Thinking Approach to Accident Investigation, Springer International Publishing Switzerland, Advanced Sciences and Technologies, for Security Applications, DOI 10.1007/978-3-319-21106-0_10.
  • Bilik, I. & Tabrikian, J. (2006). GMM-Based target classification for ground surveillance Doppler radar. IEEE Transactions on Aerospace and Electronic Systems. 42 (1): 267–277
  • Brian J. Worth, M. & USAF, B.S., (1994). Command, Control, Communications, Computers, And Intelligence (C4I) Interoperability: Are we there yet?, University of Maryland, European Division, 1994 M.A., Webster University, St. Louis, Missouri, 1994.
  • Clarke, R. A. (2010). Cyber War, HarperCollins.
  • Duchi, J. Elad, H. & Yoram, S. (2011). Adaptive Subgradient Methods for Online Learning and Stochastic Optimization, Journal of Machine Learning Research, 12: 2121-2159.
  • Fernandez, A. Del Jesus M.J. & Herrera, F. (2010). Analyzing the Hierarchical Fuzzy Rule Based Classification Systems with Genetic Rule Selection, In Proc. Of the Fourth International Workshop on Genetic and Evolutionary Fuzzy Systems, pp. 69-74.
  • http://bilin.ir/fuzzy-logic/ last visited in 2019/04/12.
  • Huang, Y.P. & Wang, S.F. (2000). Designing a fuzzy model by adaptive macroevolution genetic algorithms, Fuzzy Sets Syst. 113: 367–379.
  • Masys Antony, J. (2016). Applications of Systems Thinking and Soft Operations Research in Managing Complexity from Problem Framing to Problem Solving, Springer, dward C. Morse, University of California, Berkeley, CA, USA Panagiotis Karampelas, Hellenic Air Force Academy, Attica, Greece.
  • Rainer, H. (1997). Rule generation for hierarchical fuzzy systems, In Proc. of Annu. Conf. North American Fuzzy Information Processing, pp. 444–449.
  • Raju, G.V. & Zhou, J. (1993). Adaptive hierarchical fuzzy controller, IEEE Trans. Syst., Man, Cybern. 23 (4): 973–980.
  • Shahrestani, S.A. & Daneshgar, F. (2005). The Role of Fuzzy Awareness Modelling in Cooperative Management, Information Systems Frontiers 7 (3): 299–316.
  • Simpson, Marvin Leo, Jr. (2015). Command and control in the information age: A case study of a representative air power command and control node, Old Dominion University.
  • Wang, D. Zeng, X.J. & Keane, J.A. (2010). Intermediate Variable Normalization for Gradient Descent Learning for Hierarchical Fuzzy System, IEEE.
  • Wang, H. & Zeshui, X. (2016). An overview on the roles of fuzzy set techniques in big data processing: Trends, challenges and opportunities. Available from: https://www.researchgate.net/publication/310391112 [accessed Apr 12 2019].
  • Wang, L.X. (1999). Analysis and design of hierarchical fuzzy systems, IEEE Trans. Fuzzy Syst. 7 (5): 617–624.
  • Wu, T.P. & Chen, S.M. (1999). A new method for constructing membership functions and fuzzy rules from training examples, IEEE Trans. Syst., Man, Cybern. B, Cybern. 29 (1): 25–40.