آینده پژوهی در سیستم‌های دفاعی با استفاده از رویکردی مبتنی بر برنامه‌ریزی ریاضی به‌منظور مکان‌یابی تسهیلات درمانی و تقسیم بندی مناطق

نوع مقاله: مقاله علمی- پژوهشی

نویسندگان

1 استادیار گروه مهندسی صنایع، دانشکده مهندسی صنایع، دانشگاه صنعتی بیرجند

2 مربی گروه مهندسی صنایع، دانشکده مهندسی صنایع و کامپیوتر، دانشگاه صنعتی بیرجند

چکیده

در این تحقیق با استفاده از ابزار برنامه ­ریزی ریاضی به تعیین مکان احداث تسهیلات درمانی و تقسیم‌بندی مناطق در سیستم‌های دفاعی به‌منظور گسترش سطح مطالعات آینده­پژوهی پرداخته‌شده است. بدین منظور یک مدل ریاضی به‌منظور بهینه­سازی عملیات انتقال مصدومان در هنگام جنگ ارائه ‌شده است. در این مدل مناطق جمعیتی به گروه­هایی بزرگ‌تر تحت عنوان پهنه تقسیم­بندی شده و در هر پهنه یک مرکز درمانی برای سرویس‌دهی به مصدومان حضور دارد. توابع هدف مسأله شامل کمینه­سازی هزینه­های احداث مراکز، هزینه انتقال مصدومان و هزینه بازسازی مراکز است. مسأله شامل 3 نوع محدودیت کلی 1) محدودیت‌های ارسال مصدومان بین مراکز، 2) محدودیت تخصیص موجه مناطق جمعیتی به پهنه‌ها و 3) محدودیت ایجاد ساختارهای موجه در پهنه‌ها است. به‌منظور حل مسأله از حل­کننده CPLEX استفاده‌شده که به‌عنوان یکی از کارآمدترین ابزار بهینه‌سازی شناخته می­شود. نتایج حاصل از حل مسأله می­تواند به‌عنوان یک الگوی نظام­مند در راستای مطالعه شرایط آینده در صورت وقوع بحران­های پدافند عامل مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Future studies in defense systems by using mathematical programming in order to determine healthcare facility locations and to partition areas

نویسندگان [English]

  • Javad Tayyebi 1
  • Seyyed Mohammad Reza Kazemi 2
  • esmail hadavandi 1
1 Department of Industrial Engineering, Birjand University of Technology, Birjand, Iran.
2 Department of Industrial engineering, Birjand University of Technology, Birjand, Iran.
چکیده [English]

In this research, mathematical programming approach is applied to determine healthcare facility locations and to partition areas in defense systems in order to extend future studies. For this purpose, a mathematical model is presented whose goal is to optimize the process of transmitting injured persons in war time. In this model, population zones are partitioned into large groups, called districts. In any district, a healthcare center is present to service to injured persons. The objective functions of the problem are minimizing construction and reconstruction costs, and minimizing costs of transmitting injured persons. The problem contains three general classes of constraints: 1) constraints of sending injured persons between centers 2) constraints of assigning population zones to districts 3) constraint of satisfying feasible structures of districts. In order to solve the problem, the solver CPLEX, an efficient tool of optimization, is used. The results obtained from solving the problem can be used for future studies whenever operating defenses occur.

کلیدواژه‌ها [English]

  • Operating defense
  • Future Studies
  • Mathematical programming
  • Locating facility
  • Districting zones
  •  Abounacer, R. Rekik, M. & Renaud, J. (2014). An exact solution approach for multi-objective location–transportation problem for disaster response, Computers & Operations Research,  41: 83-93.
  • Amanatkar, H.R. Papagiannopoulos, B. & Grossberg G.T. (2017). Analysis of recent failures of disease modifying therapies in Alzheimer’s disease suggesting a new methodology for future studies, Expert review of neurotherapeutics,  17(1): 7-16.
  • Angst, F., Aeschlimann, A. & Angst, J. (2017). The minimal clinically important difference raised the significance of outcome effects above the statistical level, with methodological implications for future studies. Journal of clinical epidemiology, 82: 128-136.
  • Aslan, I., Çınar, O. & Özen, Ü. (2014). Developing strategies for the future of healthcare in Turkey by benchmarking and SWOT analysis, Procedia-Social and Behavioral Sciences, 150: 230-240.
  • Gaardboe, R. Nyvang, T. & Sandalgaard, N. (2017). Business intelligence success applied to healthcare information systems, Procedia Computer Science, 121: 483-490.
  • Gutjahr, W. J. & Dzubur, N. (2016). Bi-objective bilevel optimization of distribution center locations considering user equilibria, Transportation Research Part E: Logistics and Transportation Review, 85: 1-22.
  • Iversen, T. G. Skotland, T. & Sandvig, K. (2011). Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies, Nano today, 6(2): 176-185.
  • Kaján, E. Tervo-Kankare, K. & Saarinen, J. (2015). Cost of adaptation to climate change in tourism: Methodological challenges and trends for future studies in adaptation, Scandinavian Journal of Hospitality and Tourism, 15(3): 311-317.
  • Keikhosrokiani, P. Mustaffa, N. & Zakaria, N. (2018). Success factors in developing iHeart as a patient-centric healthcare system: A multi-group analysis, Telematics and Informatics, 35(4): 753-775.
  • Khayal, D. Pradhananga, R. Pokharel, S. & Mutlu, F. (2015). A model for planning locations of temporary distribution facilities for emergency response, Socio-Economic Planning Sciences, 52: 22-30.
  • Kılcı, F. Kara, B. Y. & Bozkaya, B. (2015). Locating temporary shelter areas after an earthquake: A case for Turkey, European Journal of Operational Research, 243(1): 323-332.
  • Nikolakopoulou, A. Mavridis, D. & Salanti, G. (2016). Planning future studies based on the precision of network meta-analysis results, Statistics in medicine, 35(7): 978-1000.
  • Norbye, B. (2016). Healthcare students as innovative partners in the development of future healthcare services: An action research approach, Nurse education today, 46: 4-9.
  • Park, K. Park, J. Kwon, Y. D. Kang, Y. & Noh, J. W. (2016). Public satisfaction with the healthcare system performance in South Korea: Universal healthcare system, Health Policy, 120 (6): 621-629.
  • Paul, J. A. & MacDonald, L. (2016). Location and capacity allocations decisions to mitigate the impacts of unexpected disasters, European Journal of Operational Research, 251(1): 252-263.
  • Redmond, S. A. Wilcox, S. L. Campbell, S. Kim, A., Finney, K. Barr, K., & Hassan, A. M. (2015). A brief introduction to the military workplace culture, Work, 50(1): 9-20.
  • Ryan, C. Korman, N. J. Gelfand, J. M. Lim, H. W. Elmets, C. A., Feldman, S. R. & Van Voorhees, A. S. (2014). Research gaps in psoriasis: opportunities for future studies. Journal of the American Academy of Dermatology, 70(1): 146-167.
  • Tofighi, S. Torabi, S. A. & Mansouri, S. A. (2016). Humanitarian logistics network design under mixed uncertainty, European Journal of Operational Research, 250(1): 239-250.
  • Van Der Hulle, T. Le Gal, G. Kyrle, P.A. Huisman, M.V. Cannegieter, S.C. & Klok, F.A. (2017) Towards a tailored diagnostic standard for future diagnostic studies in pulmonary embolism: communication from the SSC of the ISTH, Journal of Thrombosis and Haemostasis, 15(5): 1040-1043.
  • Verma, A. & Gaukler, G. M. (2015). Pre-positioning disaster response facilities at safe locations: An evaluation of deterministic and stochastic modeling approaches, Computers & Operations Research, 62: 197-209.
  • Wang, Y. & Hajli, N. (2017). Exploring the path to big data analytics success in healthcare, Journal of Business Research, 70: 287-299.